Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory.
نویسندگان
چکیده
This experiment explores the role of two forms of long-term potentiation (LTP) in behavioral memory. NMDA and/or voltage-dependent calcium channels (VDCCs) were antagonized pharmacologically at levels that block nmdaLTP and vdccLTP, respectively, in rats learning an eight-arm radial maze task. Animals were trained twice a day for 11 d under the systemic influence of MK-801, verapamil, both drugs, or saline. During acquisition, the mixed drug group displayed significantly more working memory errors and reference memory errors than all other groups. The mixed drug group was markedly impaired on the first daily trial but improved dramatically on their second daily trial. After a 7 d delay, saline and MK-801 animals maintained their predelay level of performance. The performance of the verapamil groups declined significantly over the delay. These results demonstrate that: (1) vdccLTP is necessary for the retention of information over a 7 d period, (2) the blockade of both forms of LTP prevents the retention of information over a 21 hr period, and (3) blockade of both forms of LTP does not prevent the storing of information over a short period of time (3 hr).
منابع مشابه
Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملCalcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex.
Activity-dependent long-term potentiation (LTP) in the CNS is thought to be important in learning, memory, development, and persistent pain. Here, we report that NMDA receptor-dependent LTP is the major form of long-term plasticity in the anterior cingulate cortex (ACC). In addition to N-methyl-D-aspartate (NMDA) receptors, L-type voltage-gated calcium channels are also required for inducing LT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 24 شماره
صفحات -
تاریخ انتشار 2000